Sterownik zasilania – instrukcja użytkowania.

Stałymi elementami wyświetlanymi na wyświetlaczu LCD jest łączny czas pracy urządzenia oraz aktualna data i godzina.

1. Programowanie daty i czasu.

Programowanie lub korekta zegara czasu rzeczywistego.

Data i czas w zegarze RTC są zaprogramowane automatycznie w trakcie wgrywania programu do urządzenia. Jeżeli z różnych powodów (rozładowanie baterii w zegarze, zmiana czasu) będzie konieczność korekty daty lub czasu należy wykonać następujące kroki:

- przytrzymać wciśnięty przycisk USTAWIENIA przez około 3 sekundy;

- po zwolnieniu przycisku na ekranie wyświetlacza pojawi się komunikat "Korekta daty i czasu";

- pierwsze krótkie naciśnięcie przycisku **USTAWIENIA** powoduje wyświetlenie komunikatu zmiany dnia co jest realizowane przyciskami "**Plus**" lub "**Minus**";

- kolejne naciśnięcia przycisku **USTAWIENIA** umożliwiają korektę przyciskami "**Plus**" lub "**Minus**" miesiąca, roku, godziny oraz minut;

- zakończenie ustawiania daty i czasu nastąpi po ponownym wciśnięciu przycisku USTAWIENIA przez około
 3 sekundy lub wciśnięciu przycisku STOP i następuje powrót do ekranu początkowego.

2. Praca ciągła.

Tryb pracy ciągłej nastąpi w sytuacji gdy nie został wybrany STAŁY CZAS 1, STAŁY CZAS 2 lub STAŁY CZAS 3 i nie został wybrany jeden trzech programów o definiowalnych parametrach pracy przyciskiem USTAWIENIA.

Uruchomienie tryby pracy ciągłej nastąpi po wykonaniu następujących kroków:

- brak wybranego trybu STAŁY CZAS 1,2 lub 3;
- brak wybranego jednego z trzech programów;
- wciśnięcie przycisku START.

Tryb pracy ciągłej nastąpi po minucie od momentu wciśnięcia przycisku **START**. Na ekranie wyświetlacza widoczny jest komunikat podający ile sekund pozostało do rozpoczęcia tego trybu. Jednocześnie pulsuje kontrolka pracy.

Po upływie czasu 60 sekund następuje załączenie przekaźnika z jednoczesnym włączeniem kontrolki pracy przekaźnika (niebieska dioda led) a na ekranie pojawia się komunikat informujący o możliwości zatrzymania tego trybu przyciskiem **STOP**. Zakończenie trybu powoduje wyłączenie obu kontrolek.

0	HITTHICK IN	0
	Praca cia91a ESC - stop 0:00:08 Czas pracy 0:13 24-10-2020 20:12:57	
		_

3. Tryby stałego czasu.

Wybranie trybu stałego czasu 1,2 lub 3 następuje po wykonaniu następujących kroków: - wciśniecie i zwolnienie jednego trzech przycisków oznaczonych jako "STAŁY CZAS 1", "STAŁY CZAS 2" lub "STAŁY CZAS 3";

- wciśniecie przycisku START.

Po wyborze jednego z trzech trybów stałego czasu na ekranie wyświetlacza pojawi się stosowny komunikat informujący o wybranym trybie. Następnie po 60 sekundach nastąpi uruchomienie przekaźnika oraz włączenie niebieskiej diody led.

Tryb stałego czasu można wyłączyć w dowolnym momencie przyciskiem **STOP**. Automatyczne wyłączenie trybu nastąpi po upływie czasu zgodnego z wybranym trybem.

4. Programy czasowe.

Programy oznaczone jako Program nr 1, Program nr 2 oraz Program nr 3 są wybierane przyciskami "**Plus**" oraz "**Minus**". Nazwa wybranego programu pojawia się na wyświetlaczu.

Wybór jednego z trzech programów powoduje konieczność zdefiniowania jego parametrów pracy.

a. Program nr 1.

Jest to program w którym możliwe jest uruchomienie urządzenia w trybie natychmiastowym (zwłoka 60 sekund) przez zdefiniowaną ilość godzin i minut. Aby wybrać i określić parametry pracy programu należy wykonać następujące kroki:

- przyciskami "Plus" lub "Minus" wybieramy właściwą nazwę programu (Program nr 1);

- po krótkim naciśnięciu przycisku "**USTAWIENIA**" przyciskami "**Plus**" lub "**Minus**" definiowanie ilości godzin pracy;

Nr programu 1 Ile godzin +/- 00:00 Czas pracy 0:13 25-10-2020 11:13:28	

- kolejne krótkie naciśnięcie przycisku "USTAWIENIA" definiuje ilość minut pracy;

Ile minut +/- 01:00
Czas pracy 0:13
25-10-2020 11:13:51

- trzecie wciśnięcie przycisku "USTAWIENIA" kończy definiowanie czasu pracy tego trybu i wyświetlenie komunikatu informującego o konieczności wciśnięcia przycisku START dla rozpoczęcia pracy;

- program startuje po 60 sekundach;

- możliwe przerwanie programu po naciśnięciu przycisku STOP;

- po zakończeniu programu sterownik wraca do ekranu początkowego.

b. Program nr 2.

Jest to program w którym możliwe jest uruchomienie urządzenia w trybie podania godziny startu (zwłoka 60 sekund) przez zdefiniowaną ilość godzin i minut. Aby wybrać i określić parametry pracy programu należy wykonać następujące kroki:

- przyciskami "Plus" lub "Minus" wybieramy właściwą nazwę programu (Program nr 2);

- po krótkim naciśnięciu przycisku "USTAWIENIA" przyciskami "Plus" lub "Minus" definiowane ilości godzin pracy(analogicznie jak w Program 1);
- kolejne krótkie naciśnięcie przycisku "USTAWIENIA" definiuje ilość minut pracy (analogicznie jak w Program 1);
- kolejne krótkie wciśnięcie ustawia godzinę startu;

Nn pho9hamu	2000000
Godzina +/-	04:00
25-10-2020	15:45:31

- kolejne wciśnięcie ustawia minuty startu;

- ostatnie wciśnięcie przycisku "USTAWIENIA" kończy definiowanie czasu pracy tego trybu i wyświetlenie komunikatu informującego o konieczności wciśnięcia przycisku START dla rozpoczęcia pracy (analogicznie jak w Program 1);
- program startuje po 60 sekundach;
- możliwe przerwanie programu po naciśnieciu przycisku STOP;
- po zakończeniu programu sterownik wraca do ekranu początkowego.

c. Program nr 3.

Jest to program w którym możliwe jest uruchomienie urządzenia w trybie podania godziny startu (zwłoka 60 sekund) przez zdefiniowaną ilość godzin i minut.

Program pracuje cyklicznie do momentu zakończenia jego pracy przyciskiem **STOP**. Aby wybrać i określić parametry pracy programu należy wykonać następujące kroki: - przyciskami "**Plus**" lub "**Minus**" wybieramy właściwą nazwę programu (*Program nr 3*);

- po krótkim naciśnięciu przycisku "USTAWIENIA" przyciskami "Plus" lub "Minus" definiowane ilości godzin pracy(analogicznie jak w Program 2);
- kolejne krótkie naciśnięcie przycisku "USTAWIENIA" definiuje ilość minut pracy (analogicznie jak w Program 2);
- kolejne krótkie wciśnięcie ustawia godzinę startu;
- kolejne wciśnięcie ustawia minuty startu (analogicznie jak w Program 2);
- ostatnie wciśnięcie przycisku "USTAWIENIA" kończy definiowanie czasu pracy tego trybu i wyświetlenie komunikatu informującego o konieczności wciśnięcia przycisku Ok dla rozpoczęcia pracy (analogicznie jak w Program2);
- program startuje po 60 sekundach;

możliwe przerwanie programu po naciśnięciu przycisku STOP;
po zakończeniu programu sterownik wraca do ekranu początkowego.

Sterownik zasilania – kompilacja.

1. Środowisko pracy.

Do kompilacji i wgrywania programu na płytkę Arduino Nano można zastosować dowolne środowisko IDE, np. Arduino IDE, Visual Studio Code lub Atom.

2. Biblioteki.

Program wymaga użycia bibliotek:

- DS1307 do obsługi zegara czasu rzeczywistego;
- Eeprom_at24c256 do obsługi pamięci eprom;
- LiquidCrystal_I2C do obsługi wyświetlacza.

Biblioteki te (foldery) należy umieścić w folderze bibliotek (różne lokalizacje w zależności od środowiska). W przypadku Arduino IDE lokalizacja jak na zrzucie ekranu:

🔥 CzujnikWilgotnosci	2017.09.13 17:34	Folder plików	
libraries	2017.03.28 09:24	Folder plików	
Regulator	2018.05.09 09:02	Folder plików	
zegar_szachowy	2018.05.20 11:11	Folder plików	

3. Programowanie zegara czasu rzeczywistego.

Wysłanie kodu programu na płytkę Arduino Nano i jego uruchomienie powoduje automatyczne zaprogramowanie zegara. Data i czas w tym przypadku będzie traktowana jak data i czas kompilacji. Aby tego dokonać należy w edytorze Arduino IDE odszukać fragment kodu:

// inicjacja RTC

clock.begin();

- // jezeli po odczycie z epromu pod adresem 32 jest zero to znaczy ze czas nie byl ustawiony
- // jezeli jest tam wartosc 1 to znaczy ze nie ma juz wiecej ustawiac czasu podawanego recznie

eeprom.read(32, (byte *) Odczyt_Eprom,sizeof(Odczyt_Eprom));

CzyData=atoi(Odczyt_Eprom);

// jezeli odczytano zero to znaczy ze trzeba ustawic date i czas

- // data i czas jest traktowana jako data i czas kompilacji
- // po uruchomieniu sterownika trzeba ja skorygowac

if (CzyData==0)

clock.setDateTime(2020, 9, 1, 12, 0, 0);

```
// po ustawieniu daty kompilacji zapisujemy w epromie wartosc 1
sprintf(Zapis_Eprom, "%d", 1);
// zapisuje pod adresem 32
eeprom.write(32, (byte*) Zapis_Eprom,sizeof(Zapis_Eprom));
delay(10);
}
```

a następnie w wierszu zaznaczonym na czerwono podać rok, miesiąc, dzień, godzinę, minuty i sekundy. Po podaniu właściwych danych kod programu można wysłać na płytkę Nano. Po uruchomieniu układu na wyświetlaczu LCD pojawi się data i czas podany w tym wierszu.

Użytkownik sterownika zgodnie z opisem w instrukcji będzie mógł dane te skorygować. Od tego momentu zegar będzie pokazywał aktualną godzinę i aktualną datę.

Sterownik zasilania - schemat.

Sterownik zbudowany jest zgodnie ze schematem:

Dodatkowo w części opisowej kodu programu omówione zostały wszystkie połączenia:

/* Ozonator System programowania pracy ozonatora Podlaczenie wyswietlacza LCS I2C VCC - > 5 VGND - GND SCL - A5 Nano SDA - A4 Nano Modul czasu rzeczywistego RTC DS1307 Podlaczenie DS1307 do I2C VCC - > 5 VGND - GND SCL - A5 Nano SDA - A4 Nano Eprom: *Podlaczenie:* Vcc do +5V nano Gnd do GND Nano SCL do SCL Nano SDA do SDA Nano Przekaznik: Przekaznik wyzwalany stanem HIGH + przekaznika do +5V Nano - przekaznika do Gnd Nano S przekaznika do pinu 11 Nano

Led przekaznika: - anoda przez opornik 470 om do pinu 11 Nano (niebieska) - katoda do Gnd Nano Led kontrolka programów: - anoda przez opornik 470 om do pinu 10 Nano (czerwona) - katoda do Gnd Nano Led kontrolka zasilania: - anoda przez opornik 470 om do pinu +5V Nano (zielona) - katoda do Gnd Nano Przyciski: Przycisk Prog pin D2 Nano Przycisk + pin D3 Nano Przycisk - pin D4 Nano Przycisk Czas20 - pin D5 Nano Przycisk Czas40 - pin D6 Nano Przycisk Czas60 - pin D7 Nano Przycisk ESC - pin D8 Nano Przycisk Ok - pin D9 Nano */

Funkcje kontrolek led.

Led przekaznika:

- anoda przez opornik 470 om do pinu 11 Nano (niebieska)
- katoda do Gnd Nano

Led kontrolka programów:

anoda przez opornik 470 om do pinu 10 Nano (czerwona)
katoda do Gnd Nano

Led kontrolka zasilania:

- anoda przez opornik 470 om do pinu +5V Nano (zielona) - katoda do Gnd Nano

Sterownik zasilania – podzespoły.

1. Arduino Nano v3

2. Moduł RTC DS1307

3. Eprom AT24C256

4. Zasilacz LM7805 5V lub zasilacz wpinany

5. Przekaźnik 5V

6. Dioda led czerwona

7. Dioda led niebieska

8. Dioda led zielona

9. Wyświetlacz LCD 20x4 z konwerterem I2C

